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Abstract Hidden Markov models are well-known methods for image pro-
cessing. They are used in many areas where 1D data are processed. In the
case of 2D data, there appear some problems with application HMM. There
are some solutions, but they convert input observation from 2D to 1D, or
create parallel pseudo 2D HMM, which is set of 1D HMMs in fact. This pa-
per describes authentic 2D HMM with two-dimensional input data, and its
application for pattern recognition in image processing.

1 Introduction

Hidden Markov models (HMM) are widely apply in data classification. They
are used in speech recognition, character recognition, biological sequence
analysis, financial data processing, texture analysis, face recognition, etc.
This widely application of HMM is result of its effectiveness. An extension
of the HMM to work on two-dimensional data is 2D HMM. A 2D HMM can
be regarded as a combination of one state matrix and one observation ma-
trix, where transition between states take place according to a 2D Markovian
probability and each observation is generated independently by the corre-
sponding state at the same matrix position. It was noted that the complexity
of estimating the parameters of a 2D HMMs or using them to perform max-
imum a posteriori classification is exponential in the size of data. Similar to
1D HMM, the most important thing for 2D HMMs is also to solve the three
basic problems, namely, probability evolution, optimal state matrix and pa-
rameters estimation.
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When we process one-dimensional data, we have good tools and solution
for this. Unfortunately, this is unpractical in image processing, because the
images are two-dimensional. When you convert an image from 2D to 1D ,
you lose some information. So, if we process two-dimensional data, we should
apply two-dimensional HMM, and this 2D HMM should work with 2D data.
One of solutions is pseudo 2D HMM [2, 6, 10]. This model is extension of
classic 1D HMM. There are super-states, which mask one-dimensional hidden
Markov models (Fig. 1). Linear model is the topology of superstates, where
only self transition and transition to the following superstate are possible.
Inside the superstates there are linear 1D HMM. The state sequences in the
rows are independent of the state sequences of neighboring rows. Additional,
input data are divided to the vector. So, we have 1D model with 1D data in
practise.
Other approach to image processing use two-dimensional data present in

Fig. 1 Pseudo 2D HMM [1].

works [4] and [7]. The solutions base on Markov Random Fields (MRF) and
give good results for classification and segmentation, but not in pattern recog-
nition. Interesting results showed in paper [11]. This article presents analytic
solution and evidence of correctness two-dimensional HMM. But this 2D
HMM is similar to MRF, works with one-dimensional data and can be apply
only for left-right type of HMM. This article presents real solution for 2D
problem in HMM. There is show true 2D HMM which processes 2D data.
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2 Classic 1D HMM

HMM is a double stochastic process with underlying stochastic process that is
not observable (hidden), but can be observed through another set of stochas-
tic processes that produce a sequence of observation [8]. Let O = {O1, .., OT }
be the sequence of observation of feature vectors, where T is the total number
of feature vectors in the sequence. The statistical parameters of the model
may be defined as follows [5, 9]:

• The number of states of the model, N
• The number of symbols M
• The transition probabilities of the underlying Markov chain,A = {aij}, 1 ≤
i, j ≤ N , where aij is the probability of transition from state i to state j

• The observation probabilities, B = {bjm)} 1 ≤ j ≤ N, 1 ≤ m ≤M which
represents the probability of gnerate the mth symbol in the jth state.

• The initial probability vector, Π = {πi} 1 ≤ i ≤ N.

Fig. 2 One-dimensional HMM.

Hence, the HMM requires three probability measures to be defined,A,B,Π
and the notation λ = (A,B,Π) is often used to indicate the set of parameters
of the model. In the proposed method, one model is made for each picture
of pattern. The parameters of the model are generated at random at the
beginning. Then they are estimated with Baum-Welch algorithm, which is
based on the forward-backward algorithm. The forward algorithm calculates
the coefficient αt(i) (probability of observing the partial sequence (o1, , ot)
such that state qt is i). The backward algorithm calculates the coefficient
βt(i) (probability of observing the partial sequence (ot+1, , oT ) such that state
qt is i). The Baum-Welch algorithm, which computes the λ, can be described
as follows [5]:

1. Let initial model be λ0
2. Compute new λ based on λ0 and observation O
3. If log(P (O|λ)− log(P (O)|λ0) < DELTA stop
4. Else set λ→ λ0 and go to step 2.

The parameters of new model λ, based on λ0 and observation O, are
estimated from equation of Baum-Welch algorithm [9], and then are recorded
to the database.
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3 Three basic problems

There are three fundamental problems of interest that must be solved for
HMM to be useful in some applications. These problems are the following:

1. Given observation O = (o1, o2, , oT ) and model λ = (A,B,Π), efficiently
compute P (O|λ)

2. Given observation O = (o1, o2, , oT ) and model λ find the optimal state
sequence q = (q1, q2, , qT )

3. Given observation O = (o1, o2, , oT ), estimate model parameters λ =
(A,B,Π) that maximize P (O|λ)

3.1 Solution to Problem 1

Forward Algorithm [5]:

• Define forward variable αt(i) as:

αt(i) = P (o1, o2, , ot, qt = i|λ) (1)

• αt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

• Induction

1. Initialization:
α1(i) = πibi(o1) (2)

2. Induction:

αt+1(i) =

[ N∑
i=1

αt(i)aij

]
bj(ot+1) (3)

3. Termination:

P (O|λ) =

N∑
i=1

αT (i) (4)

Backward Algorithm [5]:

• Define backward variable βt(i) as:

βt(i) = P (ot+1, ot+2, , oT , qt = i|λ) (5)

• βt(i) is the probability of observing the partial sequence (o1, o2, , ot) such
that the the state qt is i

• Induction

1. Initialization:
βT (i) = 1 (6)
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2. Induction:

βt(i) =

N∑
i=1

aijbj(ot+1βt+1(j), (7)

1 ≤ i ≤ N, t = T − 1, ..., 1

3. Termination:

P (O|λ) =

N∑
i=1

β1(i) (8)

3.2 Solution to Problem 2

Viterbi Algorithm [5]:

• Initialization:
δ1(i) = πibi(o1), 1 ≤ i ≤ N (9)

1 ≤ i ≤ N

ψ1 = 0 (10)

• Recursion:
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(ot) (11)

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ]bj(ot) (12)

1 ≤ j ≤ N, 2 ≤ t ≤ T

• Termination:
P ∗ = max

1≤i≤N
[δt(i)] (13)

q∗t = arg max
1≤i≤N

[δt(i)] (14)

• Backtracking:
q∗t = ψt(q

∗
t+1) (15)

t = T − 1, T − 2, ..., 1

3.3 Solution to Problem 3

Baum-Welch Algorithm [5]:

• Define ξ(i, j) as the probability of being in state i at time t and in state j
at time t+ 1
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ξ(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P (O|λ)
=

αt(i)aijbj(ot+1)βt+1(j)∑N
i=1

∑N
j=1 αt(i)aijbj(ot+1)βt+1(j)

(16)
• Define γ(i) as the probability of being in state i at time t, given observation

sequence.

γt(i) =

N∑
j=1

ξt(i, j) (17)

•
∑T

t=1 γt(i) is the expected number of times state i is visited

•
∑T−1

t=1 ξt(i, j) is the expected number of transition from state i to j

Update rules:

• π̄i = expected frequency in state i at time (t = 1) = γ1(i)
• āij = (expected number of transition from state i to state j)/(expected

number of transitions from state i:

āij =

∑
t ξt(i, j)∑
t γt(i)

(18)

• b̄j(k) = (expected number of times in state j and oserving symbol
k)/(expected number of times in state j:

b̄j(k) =

∑
t,ot=k γt(j)∑

t γt(j)
(19)

4 2D HMM

In paper [11], Yujian proposed definitions and proofs of 2D HMM. He has
presented several analytic formulae for solving the three basic problems of 2-
D HMM. Solution to Problem 2 is usefull, and Viterbi algorithm can be easily
adopted to image recognition with two dimensional input data. Unfortunetly,
solution to problem 1 and 3 may be use only with one dimensional data -
observation vector. Besides presented solutions are for Markov model type
”left-right”, and not ergodic. So, I present solution to problems 1 and 3 for
two dimensional data. The statistical parameters of the 2D model (Fig. 3):

• The number of states of the model N2

• The number of data streams k1 x k2 = K
• The number of symbols M
• The transition probabilities of the underlying Markov chain,A = {aijl}, 1 ≤
i, j ≤ N, 1 ≤ l ≤ N2, where aij is the probability of transition from state
ij to state l
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• The observation probabilities, B = {bijm)}, 1 ≤ i, j ≤ N, 1 ≤ m ≤ M
which represents the probability of gnerate the mth symbol in the ijth
state.

• The initial probability, Π = {πijk}, 1 ≤ i, j ≤ N, 1 ≤ k ≤ K.
• Oservation sequance O = {ot}, 1 ≤ t ≤ T, ot is square matrix simply

observation with size k1 x k2 = K

Fig. 3 Two-dimensional ergodic HMM.

4.1 Solution to 2D Problem 1

Forward Algorithm

• Define forward variable αt(i, j, k) as:

αt(i, j, k) = P (o1, o2, , ot, qt = ij|λ) (20)

• αt(i, j, k) is the probability of observing the partial sequence (o1, o2, , ot)
such that the the state qt is i, j for each kth strem of data

• Induction



8 Janusz Bobulski

1. Initialization:
α1(i, j, k) = πijkbij(o1) (21)

2. Induction:

αt+1(i, j, k) =

[ N∑
l=1

αt(i, j, k)aijl

]
bij(ot+1) (22)

3. Termination:

P (O|λ) =

T∑
t=1

K∑
k=1

αT (i, j, k) (23)

4.2 Solution to 2D Problem 3

Parameters reestimation Algorithm:

• Define ξ(i, j, l) as the probability of being in state ij at time t and in state
l at time t+ 1 for each kth strem of data

ξt(i, j, l) =
αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)

P (O|λ)
=

αt(i, j, k)aijbij(ot+1)βt+1(i, j, k)∑K
k=1

∑N2

l=1 αt(i, j, k)aijlbij(ot+1)βt+1(i, j, k)
(24)

• Define γ(i, j) as the probability of being in state i, j at time t, given ob-
servation sequence.

γt(i, j) =

N2∑
l=1

ξt(i, j, l) (25)

•
∑T

t=1 γt(i, j) is the expected number of times state ij is visited

•
∑T−1

t=1 ξt(i, j, l) is the expected number of transition from state ij to l

Update rules:

• ¯πijk = expected frequency in state i, j at time (t = 1) = γ1(i, j)
• āij = (expected number of transition from state i, j to state l)/(expected

number of transitions from state i, j:

āijl =

∑
t ξt(i, j, l)∑
t γt(i, j)

(26)

• b̄ij(k) = (expected number of times in state j and oserving symbol
k)/(expected number of times in state j:

b̄ij(k) =

∑
t,ot=k γt(i, j)∑

t γt(i, j)
(27)
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5 Experimenting

The image database Amsterdam Library of Object Images was used in ex-
perimenting. It is a color image collection of one-thousand small objects,
recorded for scientific purposes. In order to capture the sensory variation
in object recordings, they systematically varied viewing angle, illumination
angle, and illumination color for each object, and additionally captured wide-
baseline stereo images. They recorded over a hundred images of each object,
yielding a total of 110,250 images for the collection [1, 3].
In order to verify the method has been selected fifty objects. Three images
for learning and three for testing has been chosen. The 2D HMM has been
implemented with parameters N = 5, N2 = 25,K = 25,M = 50. Wavelet
transform has been chosen as features extraction technigue. Table 1 presents
results of experiments.

Table 1 Comparison of recognition rate

Method Recognition rate [%]

Eigenvector 86

1D HMM 90
2D HMM 92

6 Conclusion

Article presents a new conception about two-dimensional hidden Markov
models. We show solutions of principle problems for ergodic 2D HMM, which
may be applied for 2D data. Recognition rate of the method is 92%, which
is better than 1D HMM. Furthermore, the advantage of this approach is
that there is no need to convert the input two-dimensional image on a one-
dimensional data, what simplifies pattern recognition system.
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